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1. ABSTRACT:

Remotely sensed data is widely used in ecological
applications because of its great advantages. These
advantages are that the measures are being objectiv
repeatable and serve continuous data of the olibemen
opposed to traditional field survey based dataectithn
(Zagajewskij et al. 2005). The remote observatibdifferent
vegetation species is important and quantitatived an
qualitative information can be derived by interprgt
satellite/airborne images (Cjemg et al 2006). Witie t
capabilities of hyperspectral sensors theoreticathe
possibilities are extended to derive more infororativith
higher level of accuracy. In vegetation mapping and
monitoring unfortunately this needs more sophistida
algorithms and techniques as traditional data pmsing
techniques developed for processing of multispedata are
often fail because of the significantly more comptature of
hyperspectral imagery. Throughout the HYPER-I-NET
project we aim to further extend the applicatiorsgibilities

of hyperspectral datasets therefore significardrefs being
made in order to develop and test methodologiefuufs
hyperspectral data applications. Within the project
specifically study the vegetation related aspects o
hyperspectral data processing such as land covepima
and vegetation monitoring. In this field signifitaamount of
research can be found within the technical liteexbut none
of them is aiming the achievement of a generallgliapble
methodology that is useful for generic mapping psgs.
Most of the techniques presented are highly spefifi the
specific application and the vegetative species dha being
observed and mapped.

In this paper we present the results of a comprEhenest of
different hyperspectral data processing chain withaim to
identify the possibilities of moving forward to americ data
processing chain for vegetation mapping by means
hyperspectral imagery. During the research we bart
tested certain data processing chains wile varyihg
methodologies used at different stages of the piaieessing
system. As a following step an in-depth analysigesults
were carried out aiming to find optimal solutiom fbe given
problem. The outcomes of the study shows that lsgsetral
datasets can be successfully used in a generictatege
mapping procedure but more careful design
implementation of classification system is requirSdme of
the standard data processing chains are seleatiegrareing
identified to be more suitable for vegetation magpthan
the others.
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2. INTRODUCTION AND BACKGROUND

Detection of vegetation cover serves probably tstrbasic
information on the condition of different ecosysteand can
be derived from remotely sensed data. Applicatibrnigh
spectral and spatial resolution hyperspectral imader
mapping is particularly suitable for high mountaommunes
as in many case the traditional mapping methodetogire
unsuitable because of the habitats are inaccessi
(Zagajewskij et al. 2005)

This work presents the methodologies and the ®sofit
vegetation mapping using hyperspectral airborne atd
field mapping techniques in high mountain ecosystefe
study also aims to give a comparison of differesmnaote
sensing classification methods and to address dksilplity
of using spatial and ancillary information durifgetimage
interpretation.

There are many methodologies addressing hyperspecta

ble

processing (Cheng 2006, Guo 2006, Robila 2005) btt no

many studies are focused on the issue of genengbimg of
vegetation by means of imaging spectroscopy. Thelyst
which is the core of this research work is thus emlimat
investigating the possibilities and find optimal lig@n
regarding hyperspectral data processing chain égetation
mapping purposes. This was done by assessing
performance of different processing chains andyairad the
image interpretation results. Differently from wha¢ have
done in the past (Nairoukh et al. 2008) howevethis work
the inputs to the processing chain may vary, aradiapand
ancillary information has been also considered.

At first, starting from a radiometrically and gednially
corrected dataset, the performance of each stepgeieric
data processing chain as proposed by Gamba e2G07Y
was investigated, while different methodologies evesed
both for dimensionality reduction and for data sifisation.
Feature selection and feature extraction methodtude
Principal Components Analysis, Minimum Noise Fragatio
forward rotation, Decision Boundary Feature Ext@ttand
Discriminant Analysis Feature Extraction. For cifisation
Maximum likelihood algorithm, Spectral Angle Mappand
Neural Network algorithms were used. In order teeas the
performance of data processing while ancillary datased
the DEM and “a priori” knowledge was used and aahov
multistage classifier was specifically designede Thassifier
starts by discarding very steep areas and easiar ¢gpes
and then goes on differentiating more difficult danover
types. To investigate the potential of spatial infation
within the classification procedure, the previouggnerated
classification images were reprocessed using aiafipat
aware approach based on a fuzzy neural networktsteu
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Moreover, as a consequence of present study gelaeritc
cover classification by means of hyperspectral ienags
suggested by using ensemble classification systsnthe
mapping accuracy by different techniques were fotmtie
highly class and input source dependent. A DeciSicze
(Wallace 2003) Structure is suggested for data gusing
where different land cover types are being mappdguan
entirely different data processing chain. Finalig tresult of
such an experimental classification system desigaed
implemented in a manual fashion is presented. lavioup of
this research is the implementation of a multi-stagulti-
source DTC classification system that is capableatoy out
data processing in a highly accurate and flexibéemer and
is automated.

3. STUDY AREA AND MATERIALS

The study area in this research was a high mowuaiarea
in Poland covering the extent of the Tatra NatidPatk with
a complex vegetative coverage ranging from barksrower
different grassland communes and associationsetdehsely
vegetated coniferous shrubs and woodlands. Ourt skady
are corresponds to Gasienicowa Valley with its@umdings.
The area is located between 49°13'00"E and 49°T&Ghd
between 20°00'00"N and 20°03'00”"N, and includesiradp
and subalpine zones ranging in altitude from aldd&@0 to
about 2300 meters above sea level. The test sdtingéis
research was a DAIS 7915 dataset provided by theethity
of Warsaw in the framework of the HYPERINET (Hyper-i
net website)] project and was collected by DLR otrez
HySens campaign. A full coverage of field measugsalind
truth data was also available an additional vailichatdata
was collected during July 2008.

The Digital Airborne Imaging Spectrometer (DAIS)evated
by DLR is a hyperspectral airborne sensor has it® ow
spectral and geometric characteristic that is sunigseth
below in a tabular format according to DLR speciiimas
(DIr WEBSITE).

Spectrometer Characteristics

Wavelength range: 400nm - 12.6um, 4 Spectrometers, 79

bands
1) 400 - 1000 nm : 32 Bands, Bandwidth = 15-30 nm
Detector: Si

2) 1500 - 1800 nm : 8 Bands, Bandwidth =45 nm Detector:
InSb

3) 2000 - 2500 nm : 32 Bands, Bandwidth =20 nm Detector:
InSb

3000 - 5000 nm : 1 Band , Bandwidth =2.0 pm Detector:

InSb

4) 8000 -12600 nm : 6 Bands, Bandwidth = 0.9 um Detector:
MCT

The details of center wavelengths and bandwith information
can be found at DLR website.

Main radiometric parameters

Dynamic range: 15 bit (no gain settings)
Sensitivity  VIS/NIR: NER < 0.025 mW/cm2sr pm
SWIR: NER < 0.025 mW/cma3sr um
MIR/TIR: NET <0.1 K

Main geometric parameters

FOV: 0.894 rad (+-26 degrees) on DO 228, depending on
aircraft max. +- 39
IFOV: 3.3 mrad, (0.189 degrees)
GIFOV: depending on aircraft altitude 5 - 20 m
Scan frequency: adjustable according to aircraft altitude
between 6 and 24 Hz
Image pixels per line: 512

Table 1 Specification of the DAIS 7915 airbornass® by
DLR

4. METHODOLOGZ

The methodology focused on the testing of differdata
processing chains for classification of the hypecsal
imagery and then analyse the results of different
classifications. For data processing chain definitive used
the approach of Gamba et al. (2007) that congist two
stage processing chain with different steps astitited in
Figure 1
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Figure 1 Generic concept of processing chain for
hyperspectral data processing using Gamba et arj20

During the data processing and testing the differen
approaches we only focused our work on the secantdqgb
the processing chain marked with blue and triedeisdv
different approaches at each stage of it. For feagalection
and feature extraction Principal Components AnalfB{ESA)
Jolliffe 1986], Minimum Noise Fraction Rotation (MINF
()Green 1988, Discriminate Analysis Feature Extomct
(DAFE) (Landgrebe 2003), Decision Boundary Feature
Extraction (DBFE) (Lee and Landgrebe 1991)and Featur
Selection algorithms based on transformed divergenc
(Richards 2006) were used. For classification akseersl
supervised algorithms were used such as Maximum
Likelihood (ML) (Kay 1993) classification, Spectraingle
Mapper (SAM) (Yuhas 1992) and a Fuzzy Neural Nekwor
(NN) classifier (Gamba et al. 2003). As the DigiEkévation
Model (DEM) of the area was also available it wasdias
ancillary dataset to mask the very steep slopdebeofirea in
order to not tot bias the classification resultacht of the
previously produced transformed datasets was &ikdsiith
these methodologies and accuracy measures weredcatt.

On the classification images generated a furthiemgt was
made for spatial reprocessing of the results uairsgatially
enabled Neural Network Classifier (Li 2008) in order
further increase classification precision and tleeusacy
levels were assessed again. The schematic of tridlaw is
shown in figure 2.

The different possible processing chains are shiovfigure
3 with the combination of different configurationdlso
some of the overall well performing data processing
approaches regarding to the dataset are highlighted
measure the classification accuracy levels confusiatrices
were used. For the identification of the well peming
processing chain configurations the overall acqure@s
used as the main measure, but in the analysis ffafreatit
processing chains the confusion matrices were anea per
class basis. The obtained tabular results weréepldn order
to be easier to compare.
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Figure 2 The workflow of the project. Starting wttie
original hyperspectral dataset the different precessteps
were carried out and finally the results were asedyand
compared in order to obtain sufficient informatimmhow
the hyperspectral data classification accuracy mgpen the

processing steps applied on the data.

Figure 3 Graphical representation of the approagtied to
while designing the different processing chainghPavith
highlighted arrows are identified to be more su@ahan
others. (FS-TD=Feature selection with transformed
divergence; MNF=Minimum noise fraction rotation;
PCA=Principal components rotation; SAM=Spectral ang|
mapper; NN=Neural Net).

5. RESULTS

The results obtained in this work are a seriesanfiIcover
maps and classification results that belong to eaire
processing chain and processing methodology and
interpretation of them. Examples of classificatiesults and
most relevant confusion matrices are presentedwhels
high number of classifications were carried out éhére set
of classification results are exceeding the linufspresent
paper therefore only most relevant confusion mesriand

the

accumulated results can be presented that are faur
most sufficient to represent the obtained results support
our conclusions.

Examples of the obtained classifications are showarder
to see the differences arisen from applying difiere
classification chains in order to interpret the eatataset.

a b c
Figure 4 Examples of classification images. Thamglas are
only shown in order to show the differences amdreg t
different processing chain results. a, shows teelref the
Igorithm, b, shows that the NN algorithm obtin

chunk of land cover patches and ¢, showS#
hm result where the black area is unclasgifiue to
that SAM could not label those pixels.

f the confusion matrices are presented dsokevhat
ful to understand the conclusions of thgegrand
g referred to in the interpretation oftbsults.

In order to be easier to interpret the results thest
important interpretation results are summarizedtables
where only the overall accuracy is used as the umeasf
efficiency of the classification system. This isndobecause
the analysis of each confusion matrices obtainathguthe
classifications would exceed the frames of presmpers.
The most promising results were obtained usingtheand
the NN algorithms with different input sources vehBBAM

results are shown to prove the underperforms @& th
algorithm when lot of complex classes are introdufte the
classification system.
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Table 2 MNF rotated image Confusion matrix of thexivtaum
Likelihood classification of the dataset were dié&csstion input is
the
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Table 3 Confusion matrix of the SAM classificatidittoe MNF rotated image
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Table 4 Confusion matrix of the ML algorithm applied the feature selected (Transformed divergensed)a
input data source
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Table 5 Classification results of the MNF image ihfoclasses using Maximum Likelihood algorithm



The overall accuracy levels of most of the testemt@ssing
chains were found to be sufficient for land coveapping.
The results are shown in the table below and itlmarseen
that the overall well performing chains gained &mi
classification results in terms of overall accueaci The
accuracies shown below are representing the owvarellracy
level measured on the classifications using 9 elsd the
ground truth map where underrepresented classes wer
merged into the most appropriate class based on
physiological and phonological properties.

Methodology Accuracy (%)
FS — ML Classificaiton 81,38%
FS - SAM Classification 51.7T%
FS - PCA — ML Classification 72,08%
FS - DAFE - ML Classification 72,08%
FS — DBFE — ML Classification 74,58%
FS — Fuzzy Neural Net 79,23%

Table 6 Classification accuracy levels of some efutlell
performing processing chains

The spatial reprocessing of the classification iesagre in
most case further increased the interpretation racguby
eliminating errors originated from misinterpretatiof pixels.
The most relevant results are shown in the tatteabe

Dataset and Methodology Overall accuracy without Overall accuracy  after

reprocessing (%) reprocessing (%)

Algoorithm: ML 84,1111 84.2121
Input: MNF 15 Band

Spatial proc.: Adaptive bit

error

Algoorithm: NN 87,66 81,717

Input: MNF 15 Band

Spatial proc.: NN

Algoorithm: ML 8138 $7.96

Input: Speetral 10 Band

Spatial proc.: NN

Table 7 Classification accuracy levels of some efutlell
performing processing chains and the results #fespatial
reprocessing of the classification image

6. DISCUSSION

In summary, we found that regarding to our datdkete
were certain processing chains that were foundetsuperior

to others when the obtained overall accuracy of the
classification is used as the main measure of hawessful

an interpretation procedure is. However when atiradythe
different confusion matrices obtained during the
classifications it can be seen that the accuraugldeare
varying not just based on the methodology used for
classification but also correlate to the actuakglahat is
mapped. With other words although there are gelyensl|
performing processing chains some of the classesbea
detected more successfully when a processing dhaised
that performs on low level in general.

6.1 Data dimensionality reduction

The performance analysis of different processingirch
showed that for data dimensionality reduction thiaiivium
Noise Fraction forward rotation is the most powkerfu
methodology in most cases. It outperformed Priricipa
Components Analysis and also DAFE and DBFE. The
difference among PCA and MNF was also investigated b
plotting the data distribution and data values &sams and
standard deviation and also by classes after theyew
projected into the new feature spaces. Examplssidi plots
are shown below.

Figure 5 Mean values (a) and standard devigbpiof the
mean of the original spectral dataset.
Dsfasd

c d
Figure 6 The Mean values and of PCA (a) and MNFn{a)it
sources and the standard deviation of the meaR @k (b)
and MNF (d).
When plotting the same values on a per class lhsis
difference between PCA and MNF transformation isezde
follow. Some of these examples are provided beldvere

comparison can be done among the different data
distributions after rotating the feature space. jplotting the
histograms a buffered version of the available gcbtruth

map was used therefore the number of samples tuahe
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Figure 7 The comparison of Grassland (a) and Pimé¢h)
land cover types’ data distribution in the origidataset, in
the T 3 bands of the PCA projected and in tfleg8bands of

the MNF rotated image using the histograms extcaoye

training dataset.

On the figures it can be seen that using the MN&tian first

of all the data is better compressed and seconiéy t

distribution of the values is also compressed causmaller
deviation of the values of the mean. As a furtlmersequence
that can be seen in the example of the grasslamt daver
type plots even if grassland contains more indigidiand
cover classes (partly that is why there are mdtiptaks in
the histogram) the deviation of the curve is sigaiftly
smaller in case of MNF rotated bands. This uniceeture
and its positive effect on classification accuraatues is
supported by the selection of processing chainsreviire

most cases MNF rotation was the data transformation

technique.
Dataclassification

While analyzing the results obtained by differerated
processing chains the confusion matrices were éganto
graphs for better visualization and comparabilityrgoses.
To produce these graphs, a large number of traimind
validation data was used. This results lower aayura
measures but serves better information on overatiéncies.
These plots helped to identify some key elementghef
differences among the different processing chair&ome
examples of those plots are provided below with aime of
supporting the leveraged properties of certain gssing
chain configuration.

—e— ML Producer acc.
—s— ML User acc.

1004 — — SAM Producer acc.
—<«— SAM User acc.

Accuracy (Percent)

Figure 8 Comparison of user- and producer accuaid
of two classification of the MNF rotated input dataurce.
As can be seen on the diagram even if SAM was faome
perform poorly in overall compared to other cldsation
methods in case of Spaggiotechio sp. The useracyisvel
was higher than with ML classification that in catksserved

one of the best classification result.

The classification results were also analysed éotse effect
of the varying input source of the classificatiorogedure.
Graphs were produced to make it easier the congrag$
different classification results some of which isegented
below for illustration.

Also the input of the classification was found ® dffective
on classification results when examining on a peelfasis.
This means that even MNF rotated image was idedtio
be the most suitable for a generic vegetation ifieason
procedure the detection of some particular lancecelasses
(e.g. Plagiotechio sp.) gained better results whging the
PCA image or the feature selected spectral bandepas
source for the classification.

When we take into account the effects of the aggieqg of
classes that is the case when no representaticedaa is
available the differences become more significatabse the
omission and commission properties of each coysesyare
highly depend on the transformation that was agptitethe
original data. This means that when classes arecggtpd
the classifier become more sensitive for the irgate when
examining on a per class bases. This is also repted in a
figure where we clumped land cover classes siimgadi real
life situation when in the field data there is naffisient
information on underrepresented land cover classes.

120

PCA Producer acc.

—%—Fs spectral Producer acc. —e— FS spectral User acc

100 4 PCA User acc.

Accuracy (Percent)

&
2

Figure 9 Comparison of classification results usheysame
input data source for classification and differelassification
methodology.
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Figure 10 Producer and user accuracy levels of rifit
classifications where input data source is charagetl
training data is aggregated into 8 classes.

In order to retrieve further details on the natofelassifiers
a visual assessment of classification images wene.dThe
purpose of this was to compare the classificatioage with
each other and also with the data collected duttiregfield
survey. It was important because even if full greburuth
validation data was available the accuracy of thiagkt was
unknown and the data was created using satelldeagnial
photo interpretation but in many cases surrogatasets
were used instead of ground collected data. By fheal/
comparison the some of the land cover patches lidded
against images taken during the field survey whire
assessment of fragmentation level of ground coedygens
were emphasised. By comparing different classificati
images it was aimed to identify these difference®rag the
different results.

6.2 Spatial reprocessing

By reprocessing spatially the images using a newsdiork

approach it was aimed to remove individual pixekeleerrors
from the classification by examining the surrounginf each
pixel and train the neural network with trainingal& order
to be able to analyse the neighbourhood area df pael.

This means that if all surrounding pixels withincertain

distance had a particular label the given pixetlatas likely
to be changed too that label if in the trainingaditere were
no individual pixels or small polygons present.
illustration can be seen in figure below.

a b
Figurell lllustration of how spatial re-processimgn
eliminate individual pixel classification errorshd original
classification (a) and after re-processing (b)

The results showed that the spatial reprocessinigeofimage
enabled the accuracy level to further increasenddigh the
increment cannot be showed really in the overalleacy of
the classification as the limited number of pixated for
assessment are not able to express the changbsyaare.

The

However in terms of overall accuracy levels a small

increment can be seen. Also by visual assessmerieof
classification images compared to the spatiallyraepssed
ones showed evidence that significantly less inldial pixels
were labelled differently than the majority foundmunding
area that resulted a more smooth classificationgéna
Although the assessment of accuracy was found to
difficult to carry out on the spatially reprocesseathges it
was found that for some particular applications tresult

be

may be more appropriate than the ones without apati

reprocessing.

7. CONCLUSIONS

The processing of hyperspectral data for vegetat&ated
applications is still an issue to be solved. Thmglexity of
the dataset and the varying nature of vegetatiod kover
needs sophisticated methodologies for interpretectly. In
this study we compared different processing ch&inglata
interpretation aiming a generally applicable datacpssing
chain when vegetation is to be detected. In oudystwe
found that there are some processing chains titaedarm
others in terms of the gained overall accuracy ltevin
particular best results could have been obtain&d,66%)
when the Minimum Noise Fraction forward rotationswesed
for data dimensionality reduction and the first B&nd of
MNF image was classified using a fuzzy Neural Nelwo
algorithm. We obtained the second best results whehe
same processing chain we swapped the classifidr wit
Maximum Likelihood algorithm, where although theeosll

accuracy was only 84,11% the processing time neésled

significantly less. The comparison and analysisestilts on a
per pixel basis showed that although Spectral Aiigpper
performed poorly in terms of obtained overall aecyrlevel
(57,77) there were some classed could be detautest
accurately using this algorithm. Also the comparisof

different data dimensionality techniques and thetada

histogram of training data after data transformmatihowed

that the performance of techniques are slightlyssla

dependent. Further problem identified is the huaygation of
vegetation land cover’s spectral reflectance prigeethat is
constantly varying over different time scales. Taiectance
is varying over a day according to biophysical psses
within the plants that reacts for the incoming tigtmount
and quality and also there is a variation over\tbgetative
period as the plant grows the reflectance propedre also
changing. These considerations suggest that there single
processing chain that is always going to perforrthvthe
highest overall accuracy level instead there amrgssing
chains that are less sensitive for these variatipcan be
expected that non-parametric decision rules wil/esenore
accurate classification result while by careful-precessing
parametric classifiers can also perform on a higtueacy
level.

To handle the problem of these variations and ifierences
arisen in classification accuracies on a per clesis we
propose a flexible data processing approach bygusialti

stage classification system, where there is a pitisgito

change the applied methodology at each stage of
classifier. We suggest the application of a denisicee
structure adapted for the problems of vegetatiomitadng

and detection by means of hyperspectral images faiow

up of this study we examine the possibility of stoacting a
decision tree structure based classification systeat is
flexible enough and can serve high classificaticouaacy

the



level by integrating the advantages of each cliessahd data
dimensionality reduction technique and classifmati
methodology.

We also suggest further studies on spatial infaonat
content of the image scenes that can also be ategljinto
the classification. Vegetation texture and spatraperties of
the land cover seems to improve classification magulevel.
Furthermore textural information caries less ovére t
different time scales therefore sometimes is meeful than
the huge amount of spectral information of the tetien
that is observed.

We see great possibilities of hyperspectral dagaset
mapping procedures therefore our future work vatifs on
the above problems and we will aim to further ioya the
generic vegetation monitoring and classificatiorsglilities
of hyperspectral data applications.
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