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1. ABSTRACT: 

Remotely sensed data is widely used in ecological 
applications because of its great advantages. These 
advantages are that the measures are being objective, 
repeatable and serve continuous data of the observed area 
opposed to traditional field survey based data collection 
(Zagajewskij et al. 2005). The remote observation of different 
vegetation species is important and quantitative and 
qualitative information can be derived by interpreting 
satellite/airborne images (Cjemg et al 2006). With the 
capabilities of hyperspectral sensors theoretically the 
possibilities are extended to derive more information with 
higher level of accuracy. In vegetation mapping and 
monitoring unfortunately this needs more sophisticated 
algorithms and techniques as traditional data processing 
techniques developed for processing of multispectral data are 
often fail because of the significantly more complex nature of 
hyperspectral imagery. Throughout the HYPER-I-NET 
project we aim to further extend the application possibilities 
of hyperspectral datasets therefore significant effort is being 
made in order to develop and test methodologies useful for 
hyperspectral data applications. Within the project we 
specifically study the vegetation related aspects of 
hyperspectral data processing such as land cover mapping 
and vegetation monitoring. In this field significant amount of 
research can be found within the technical literature but none 
of them is aiming the achievement of a generally applicable 
methodology that is useful for generic mapping purposes. 
Most of the techniques presented are highly specific for the 
specific application and the vegetative species that are being 
observed and mapped.  
In this paper we present the results of a comprehensive test of 
different hyperspectral data processing chain with the aim to 
identify the possibilities of moving forward to a generic data 
processing chain for vegetation mapping by means of 
hyperspectral imagery. During the research we built and 
tested certain data processing chains wile varying the 
methodologies used at different stages of the data processing 
system. As a following step an in-depth analysis of results 
were carried out aiming to find optimal solution for the given 
problem. The outcomes of the study shows that hyperspectral 
datasets can be successfully used in a generic vegetation 
mapping procedure but more careful design and 
implementation of classification system is required. Some of 
the standard data processing chains are selected and are being 
identified to be more suitable for vegetation mapping than 
the others.  

 

2. INTRODUCTION AND BACKGROUND 

Detection of vegetation cover serves probably the most basic 
information on the condition of different ecosystems and can 
be derived from remotely sensed data. Application of high 
spectral and spatial resolution hyperspectral imagery for 
mapping is particularly suitable for high mountain communes 
as in many case the traditional mapping methodologies are 
unsuitable because of the habitats are inaccessible 
(Zagajewskij et al. 2005) 
This work presents the methodologies and the results of 
vegetation mapping using hyperspectral airborne data and 
field mapping techniques in high mountain ecosystems. The 
study also aims to give a comparison of different remote 
sensing classification methods and to address the possibility 
of using spatial and ancillary information during the image 
interpretation. 
There are many methodologies addressing hyperspectral data 
processing (Cheng 2006, Guo 2006, Robila 2005) but not 
many studies are focused on the issue of general mapping of 
vegetation by means of imaging spectroscopy. The study 
which is the core of this research work is thus aimed at 
investigating the possibilities and find optimal solution 
regarding hyperspectral data processing chain for vegetation 
mapping purposes. This was done by assessing the 
performance of different processing chains and analysing the 
image interpretation results. Differently from what we have 
done in the past (Nairoukh et al. 2008) however, in this work 
the inputs to the processing chain may vary, and spatial and 
ancillary information has been also considered. 
At first, starting from a radiometrically and geometrically 
corrected dataset, the performance of each step of a generic 
data processing chain as proposed by Gamba et al. (2007) 
was investigated, while different methodologies were used 
both for dimensionality reduction and for data classification. 
Feature selection and feature extraction methods include 
Principal Components Analysis, Minimum Noise Fraction 
forward rotation, Decision Boundary Feature Extraction and 
Discriminant Analysis Feature Extraction. For classification 
Maximum likelihood algorithm, Spectral Angle Mapper and 
Neural Network algorithms were used. In order to assess the 
performance of data processing while ancillary data is used 
the DEM and “a priori” knowledge was used and a novel 
multistage classifier was specifically designed. The classifier 
starts by discarding very steep areas and easier cover types 
and then goes on differentiating more difficult land cover 
types. To investigate the potential of spatial information 
within the classification procedure, the previously generated 
classification images were reprocessed using a spatially-
aware approach based on a fuzzy neural network structure. 



 

Moreover, as a consequence of present study generic land 
cover classification by means of hyperspectral imagery is 
suggested by using ensemble classification systems as the 
mapping accuracy by different techniques were found to be 
highly class and input source dependent. A Decision Tree 
(Wallace 2003) Structure is suggested for data processing 
where different land cover types are being mapped using an 
entirely different data processing chain. Finally the result of 
such an experimental classification system designed and 
implemented in a manual fashion is presented. A follow up of 
this research is the implementation of a multi-stage, multi-
source DTC classification system that is capable to carry out 
data processing in a highly accurate and flexible manner and 
is automated. 
 

3. STUDY AREA AND MATERIALS 

The study area in this research was a high mountainous area 
in Poland covering the extent of the Tatra National Park with 
a complex vegetative coverage ranging from bare rocks over 
different grassland communes and associations to the densely 
vegetated coniferous shrubs and woodlands. Our exact study 
are corresponds to Gasienicowa Valley with its surroundings. 
The area is located between 49°13’00”E and 49°15’00”E and 
between 20°00’00”N and 20°03’00”N, and includes alpine 
and subalpine zones ranging in altitude from about 1500 to 
about 2300 meters above sea level. The test set used in this 
research was a DAIS 7915 dataset provided by the University 
of Warsaw in the framework of the HYPERINET (Hyper-i-
net website)] project and was collected by DLR over the 
HySens campaign. A full coverage of field measured ground 
truth data was also available an additional validation data 
was collected during July 2008. 
The Digital Airborne Imaging Spectrometer (DAIS) operated 
by DLR is a hyperspectral airborne sensor has its own 
spectral and geometric characteristic that is summarised 
below in a tabular format according to DLR specifications 
(Dlr WEBSITE). 
 

Spectrometer Characteristics 
Wavelength range: 400nm - 12.6µm, 4 Spectrometers, 79 

bands 
1)  400 - 1000 nm : 32 Bands, Bandwidth = 15-30 nm  

Detector:   Si 
2) 1500 - 1800 nm :  8 Bands, Bandwidth = 45    nm  Detector: 

InSb 
3) 2000 - 2500 nm : 32 Bands, Bandwidth = 20    nm  Detector: 

InSb 
3000 - 5000 nm :  1 Band , Bandwidth = 2.0   µm  Detector: 

InSb 
4) 8000 -12600 nm :  6 Bands, Bandwidth = 0.9   µm  Detector:  

MCT 
The details of center wavelengths and bandwith information 

can be found at DLR website. 
Main radiometric parameters 

Dynamic range:   15 bit (no gain settings) 
Sensitivity      VIS/NIR:       NER  < 0.025  mW/cm²sr µm 

SWIR:       NER  < 0.025  mW/cm²sr µm 
MIR/TIR:       NET  < 0.1      K 
Main geometric parameters 

FOV:    0.894 rad (+-26 degrees) on DO 228, depending on 
aircraft max. +- 39 

IFOV:   3.3 mrad, (0.189 degrees) 
GIFOV:  depending on aircraft altitude 5 - 20 m 

Scan frequency: adjustable according to aircraft altitude 
between 6 and 24 Hz 

Image pixels per line: 512 
Table 1 Specification of the DAIS  7915 airborne sensor by 

DLR 

4. METHODOLOGZ 

The methodology focused on the testing of different data 
processing chains for classification of the hyperspectral 
imagery and then analyse the results of different 
classifications. For data processing chain definition we used 
the approach of Gamba et al. (2007)  that consist of a two 
stage processing chain with different steps as illustrated in 
Figure 1 
 

 
Figure 1 Generic concept of processing chain for 

hyperspectral data processing using Gamba et al (2007) 
. 

During the data processing and testing the different 
approaches we only focused our work on the second part of 
the processing chain marked with blue and tried several 
different approaches at each stage of it. For feature selection 
and feature extraction Principal Components Analysis (PCA) 
Jolliffe 1986], Minimum Noise Fraction Rotation (MNF) 
()Green 1988, Discriminate Analysis Feature Extraction 
(DAFE) (Landgrebe 2003), Decision Boundary Feature 
Extraction (DBFE) (Lee and Landgrebe 1991)and Feature 
Selection algorithms based on transformed divergence 
(Richards 2006) were used. For classification also several 
supervised algorithms were used such as Maximum 
Likelihood (ML) (Kay 1993) classification, Spectral Angle 
Mapper (SAM) (Yuhas 1992) and a Fuzzy Neural Network 
(NN) classifier (Gamba et al. 2003). As the Digital Elevation 
Model (DEM) of the area was also available it was used as 
ancillary dataset to mask the very steep slopes of the area in 
order to not tot bias the classification results. Each of the 
previously produced transformed datasets was classified with 
these methodologies and accuracy measures were carried out. 
On the classification images generated a further attempt was 
made for spatial reprocessing of the results using a spatially 
enabled Neural Network Classifier (Li 2008) in order to 
further increase classification precision and the accuracy 
levels were assessed again. The schematic of this workflow is 
shown in figure 2. 
 
The different possible processing chains are shown in figure 
3 with the combination of different configurations. Also 
some of the overall well performing data processing 
approaches regarding to the dataset are highlighted. To 
measure the classification accuracy levels confusion matrices 
were used. For the identification of the well performing 
processing chain configurations the overall accuracy was 
used as the main measure, but in the analysis of different 
processing chains the confusion matrices were used on a per 
class basis. The obtained tabular results were plotted in order 
to be easier to compare. 
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Figure 2 The workflow of the project. Starting with the 
original hyperspectral dataset the different processing steps 
were carried out and finally the results were analysed and 
compared in order to obtain sufficient information on how 

the hyperspectral data classification accuracy depends on the 
processing steps applied on the data. 
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Figure 3 Graphical representation of the approach applied to 
while designing the different processing chains. Paths with 
highlighted arrows are identified to be more suitable than 

others. (FS-TD=Feature selection with transformed 
divergence; MNF=Minimum noise fraction rotation; 

PCA=Principal components rotation; SAM=Spectral angle 
mapper; NN=Neural Net). 

 
 
 
 
 

5. RESULTS 

 
The results obtained in this work are a series of land cover 
maps and classification results that belong to a certain 
processing chain and processing methodology and the 
interpretation of them.  Examples of classification results and 
most relevant confusion matrices are presented below. As 
high number of classifications were carried out the entire set 
of classification results are exceeding the limits of present 
paper therefore only most relevant confusion matrices and 

accumulated results can be presented that are found to be 
most sufficient to represent the obtained results and support 
our conclusions.  
Examples of the obtained classifications are shown in order 
to see the differences arisen from applying different 
classification chains in order to interpret the same dataset. 
 

 
             a        b                              c 
Figure 4 Examples of classification images. The examples are 

only shown in order to show the differences among the 
different processing chain results. a, shows the result of the 

ML algorithm, b, shows that the NN algorithm obtained 
bigger chunk of land cover patches and c, shows the SAM 
algorithm result where the black area is unclassified due to 

that SAM could not label those pixels. 
 
Some of the confusion matrices are presented as a whole that 
are useful to understand the conclusions of the project and 
are being referred to in the interpretation of the results. 
 
In order to be easier to interpret the results the most 
important interpretation results are summarized in tables 
where only the overall accuracy is used as the measure of 
efficiency of the classification system. This is done because 
the analysis of each confusion matrices obtained during the 
classifications would exceed the frames of present papers. 
The most promising results were obtained  using the ML and 
the NN algorithms with different input sources while SAM 
results are shown to prove  the underperforms of the 
algorithm when lot of complex classes are introduced for the 
classification system.  

 

Table 2 MNF rotated image Confusion matrix of the Maximum 
Likelihood classification of the dataset were classification input is 

the  
 



 

 
 

Table 3 Confusion matrix of the SAM classification of the MNF rotated image 
 

Table 4 Confusion matrix of the ML algorithm applied on the feature selected (Transformed divergence based) 
input data source 

 

 
Table 5 Classification results of the MNF image into 11 classes using Maximum Likelihood algorithm 

 



 

 
The overall accuracy levels of most of the tested processing 
chains were found to be sufficient for land cover mapping. 
The results are shown in the table below and it can be seen 
that the overall well performing chains gained similar 
classification results in terms of overall accuracies. The 
accuracies shown below are representing the overall accuracy 
level measured on the classifications using 9 classes of the 
ground truth map where underrepresented classes were 
merged into the most appropriate class based on 
physiological and phonological properties. 
 
 

 
 

Table 6 Classification accuracy levels of some of the well 
performing processing chains 

 
 
The spatial reprocessing of the classification images are in 
most case further increased the interpretation accuracy by 
eliminating errors originated from misinterpretation of pixels. 
The most relevant results are shown in the table below. 
 

 
Table 7 Classification accuracy levels of some of the well 

performing processing chains and the results after the spatial 
reprocessing of the classification image 

 
6. DISCUSSION 

In summary, we found that regarding to our dataset there 
were certain processing chains that were found to be superior 
to others when the obtained overall accuracy of the 
classification is used as the main measure of how successful 
an interpretation procedure is. However when analyzing the 
different confusion matrices obtained during the 
classifications it can be seen that the accuracy levels are 
varying not just based on the methodology used for 
classification but also correlate to the actual class that is 
mapped. With other words although there are generally well 
performing processing chains some of the classes can be 
detected more successfully when a processing chain is used 
that performs on low level in general. 
 

6.1 Data dimensionality reduction 

The performance analysis of different processing chains 
showed that for data dimensionality reduction the Minimum 
Noise Fraction forward rotation is the most powerful 
methodology in most cases. It outperformed Principal 
Components Analysis and also DAFE and DBFE. The 
difference among PCA and MNF was also investigated by 
plotting the data distribution and data values as means and 
standard deviation and also by classes after they were 
projected into the new feature spaces. Examples of such plots 
are shown below. 
 

            a 

              b 
   Figure 5 Mean values (a) and standard deviation (b) of the 

mean of the original spectral dataset. 
Dsfasd 
 
 
 

                   a                                    b          

 
 
                     c                                                   d 
Figure 6 The Mean values and of PCA (a) and MNF (c) input 
sources and the standard deviation of the mean for PCA (b) 
and MNF (d). 
When plotting the same values on a per class basis the 
difference between PCA and MNF transformation is easier to 
follow. Some of these examples are provided below where 
comparison can be done among the different data 
distributions after rotating the feature space. For plotting the 
histograms a buffered version of the available ground truth 
map was used therefore the number of samples is unequal. 
 



 

Spectral 

 
PCA 

 
MNF 

 
 
          a,     b, 

Figure 7 The comparison of Grassland (a) and Pinetum (b) 
land cover types’ data distribution in the original dataset, in 
the 1st 3 bands of the PCA projected and in the 1st 3 bands of 

the MNF rotated image using the histograms extracted by 
training dataset. 

 
On the figures it can be seen that using the MNF rotation first 
of all the data is better compressed and secondly the 
distribution of the values is also compressed causing smaller 
deviation of the values of the mean. As a further consequence 
that can be seen in the example of the grassland land cover 
type plots even if grassland contains more individual land 
cover classes (partly that is why there are multiple peaks in 
the histogram) the deviation of the curve is significantly 
smaller in case of MNF rotated bands. This unique feature 
and its positive effect on classification accuracy values is 
supported by the selection of processing chains where in 
most cases MNF rotation was the data transformation 
technique.  
 
Data classification 
 
While analyzing the results obtained by different data 
processing chains the confusion matrices were exported into 
graphs for better visualization and comparability purposes. 
To produce these graphs, a large number of training and 
validation data was used. This results lower accuracy 
measures but serves better information on overall tendencies. 
These plots helped to identify some key elements of the 
differences among the different processing chains.  Some 
examples of those plots are provided below with the aim of 
supporting the leveraged properties of certain processing 
chain configuration.  
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Figure 8 Comparison of user- and producer accuracy levels 
of two classification of the MNF rotated input data source. 

As can be seen on the diagram even if SAM was found to be 
perform poorly in overall compared to other classification 

methods in case of Spaggiotechio sp. The user accuracy level 
was higher than with ML classification that in overall served 

one of the best classification result. 
 
The classification results were also analysed to see the effect 
of the varying input source of the classification procedure. 
Graphs were produced to make it easier the comparison of 
different classification results some of which is presented 
below for illustration. 
Also the input of the classification was found to be affective 
on classification results when examining on a per pixel basis. 
This means that even  MNF rotated image was identified to 
be the most suitable for a generic vegetation classification 
procedure the detection of some particular land cover classes 
(e.g. Plagiotechio sp.) gained better results when using the 
PCA image or the feature selected spectral bands as input 
source for the classification. 
When we take into account the effects of the aggregation of 
classes that is the case when no representative field data is 
available the differences become more significant because the 
omission and commission properties of each cover types are 
highly depend on the transformation that was applied to the 
original data. This means that when classes are aggregated 
the classifier become more sensitive for the input data when 
examining on a per class bases. This is also represented in a 
figure where we clumped land cover classes simulating a real 
life situation when in the field data there is no sufficient 
information on underrepresented land cover classes.  
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Figure 9 Comparison of classification results using the same 
input data source for classification and different classification 

methodology. 
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Figure 10 Producer and user accuracy levels of different 
classifications where input data source is changed and 

training data is aggregated into 8 classes. 
 
In order to retrieve further details on the nature of classifiers 
a visual assessment of classification images were done. The 
purpose of this was to compare the classification image with 
each other and also with the data collected during the field 
survey. It was important because even if full ground truth 
validation data was available the accuracy of the dataset was 
unknown and the data was created using satellite and aerial 
photo interpretation but in many cases surrogate datasets 
were used instead of ground collected data. By the visual 
comparison the some of the land cover patches were linked 
against images taken during the field survey where the 
assessment of fragmentation level of ground cover polygons 
were emphasised. By comparing different classification 
images it was aimed to identify these differences among the 
different results.  
 
6.2 Spatial reprocessing 

By reprocessing spatially the images using a neural network 
approach it was aimed to remove individual pixel label errors 
from the classification by examining the surroundings of each 
pixel and train the neural network with training data in order 
to be able to analyse the neighbourhood area of each pixel. 
This means that  if all surrounding pixels within a certain 
distance had a particular label the given pixel label was likely 
to be changed too that label if in the training data there were 
no individual pixels or small polygons present. The 
illustration can be seen in figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
               a    b 
Figure11 Illustration of how spatial re-processing can 
eliminate individual pixel classification errors. The original 
classification (a) and after re-processing (b) 
 
The results showed that the spatial reprocessing of the image 
enabled the accuracy level to further increase. Although the 
increment cannot be showed really in the overall accuracy of 
the classification as the limited number of pixels used for 
assessment are not able to express the changes as they are. 

However in terms of overall accuracy levels a small 
increment can be seen. Also by visual assessment of the 
classification images compared to the spatially reprocessed 
ones showed evidence that significantly less individual pixels 
were labelled differently than the majority found surrounding 
area that resulted a more smooth classification image. 
Although the assessment of accuracy was found to be 
difficult to carry out on the spatially reprocessed images it 
was found that for some particular applications this result 
may be more appropriate than the ones without spatial 
reprocessing. 
 
 

7. CONCLUSIONS 

The processing of hyperspectral data for vegetation related 
applications is still an issue to be solved. The complexity of 
the dataset and the varying nature of vegetation land cover 
needs sophisticated methodologies for interpret correctly. In 
this study we compared different processing chains for data 
interpretation aiming a generally applicable data processing 
chain when vegetation is to be detected. In our study we 
found that there are some processing chains that outperform 
others in terms of the gained overall accuracy levels. In 
particular best results could have been obtained  (87,66%) 
when the Minimum Noise Fraction forward rotation was used 
for data dimensionality reduction and the first 15 band of 
MNF image was classified using a fuzzy Neural Network 
algorithm. We obtained the second best results when in the 
same processing chain we swapped the classifier with a 
Maximum Likelihood algorithm, where although the overall 
accuracy was only 84,11% the processing time needed is 
significantly less. The comparison and analysis of results on a 
per pixel basis showed that although Spectral Angle Mapper 
performed poorly in terms of obtained overall accuracy level 
(57,77) there were some classed  could be detected most 
accurately using this algorithm. Also the comparison of 
different data dimensionality techniques and the data 
histogram of training data after data transformation showed 
that the performance of techniques are slightly class 
dependent. Further problem identified is the huge variation of 
vegetation land cover’s spectral reflectance properties that is 
constantly varying over different time scales. The reflectance 
is varying over a day according to biophysical processes 
within the plants that reacts for the incoming light amount 
and quality and also there is a variation over the vegetative 
period as the plant grows the reflectance properties are also 
changing. These considerations suggest that there is no single 
processing chain that is always going to perform with the 
highest overall accuracy level instead there are processing 
chains that are less sensitive for these variation. It can be 
expected that non-parametric decision rules will serve more 
accurate classification result while by careful pre-processing 
parametric classifiers can also perform on a high accuracy 
level.  
To handle the problem of these variations and the differences 
arisen in classification accuracies on a per class basis we 
propose a flexible data processing approach by using multi 
stage classification system, where there is a possibility to 
change the applied methodology at each stage of the 
classifier. We suggest the application of a decision tree 
structure adapted for the problems of vegetation monitoring 
and detection by means of hyperspectral images. As a follow 
up of this study we examine  the possibility of constructing a 
decision tree structure based classification system that is 
flexible enough and can serve high classification accuracy 



 

level by integrating the advantages of each classifier and data 
dimensionality reduction technique and classification 
methodology. 
We also suggest further studies on spatial information 
content of the image scenes that can also be integrated into 
the classification. Vegetation texture and spatial properties of 
the land cover seems to improve classification accuracy level. 
Furthermore textural information caries less over the 
different time scales therefore sometimes is more useful than 
the huge amount of spectral information of the vegetation 
that is observed.  
We see great possibilities of hyperspectral datasets in 
mapping procedures therefore our future work will focus on 
the above problems and  we will aim to further improve the 
generic vegetation monitoring and classification possibilities 
of hyperspectral data applications. 
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